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Abstract

In porous media subject to applied magnetic field, the internal field arises out of susceptibility contrast of the constituents. We

have examined the spatial inhomogeneity of the internal fields in a random pack of spheres using numerical computation. We find

that the pair-correlation function of the internal field (K2) is a close approximation to the structure factor of the material, thus K2
can be used to characterize pore geometry. The magnetic length scale KM exhibited in K2 is shown to be related to the fluid transport
in the medium.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The internal structures of many complex materials

are vital for their properties. For instance, the amount
of the solid bone tissue and its spatial structure are

critical for the bone strength. Inorganic porous media

such as rocks, concretes, and soils may allow transport

of fluids depending on their porosity and pore sizes.

We take the approach that the internal field due to the

susceptibility contrast of the constituent materials

carries a fingerprint of the internal structure of the

materials [1]. Therefore, various magnetic relaxation
phenomena which probe this internal field are poten-

tially useful to unfold the pore geometry. Such internal

field inhomogeneity was first recognized by Brown [2].

He computed the magnetic field distributions from a

single magnetized grain and a random packing of

grains, and also observed the effects of such distribu-

tions on the decay of NMR signals. Drain [3] studied

the NMR line broadening due to field inhomogeneities
in a powdered sample. He computed the field distri-

bution arising from nearest neighbor spheres (and
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other shapes) in a cubic close packing. Sen and Axelrod

[4] recently reviewed the literature on internal fields

while computing it for a pack of cylinders. The effects

of the internal field have since been observed [5–8]
mostly by its contribution to transverse spin–spin re-

laxation and characterized by a very wide distribution

of gradients.

The purpose of this paper is to study statistical fea-

tures of the local magnetic field and show that they are

closely related to the corresponding attributes of the

geometry. In particular, we show a close correspondence

of the two-point correlation function of the internal field
and that of the pore space. Two-point correlation

function is a fundamental attribute [9] of the structure

and determines static scattering of light, X-ray, and

neutrons by the object.
2. Structure factor and correlation functions

The structure factor or the pair-correlation function

S2ðrÞ of a porous material is defined as a macroscopi-
cally averaged quantity [10]:

S2ðrÞ �
1

Vp

Z
dr1X ðr1 þ rÞX ðr1Þ: ð1Þ
erved.
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Here Vp is the the pore volume and the function X ðrÞ is
defined to be unity in the pore space and zero otherwise.

Thus,
R
drX ðrÞ=Vp ¼ 1. We will assume that the sample

is homogeneous and isotropic, so S2ðrÞ is only a function
of jrj. Note that the definition implies that S2ðrÞP 0 and

also its Fourier transform is positive definite.

First consider the limiting behavior of S2ðrÞ:
1

Vp

Z
drS2ðrÞ ¼ 1; ð2Þ

S2ð0Þ ¼ 1; ð3Þ

S2ð1Þ ¼ /; ð4Þ

dS2ðrÞ
dr

����
r¼0

¼ � S
4Vp

: ð5Þ

Here, S is the total surface area of the sample and / is
the porosity. The proof of the last identity can be found

in [10,11]. There is an implicit angular average and the

sample is assumed to be isotropic. To incorporate the
limiting behavior of S2, we define the normalized pair-
correlation function f as

S2ðrÞ � / þ ð1� /Þf ðrÞ; ð6Þ
so that f ð0Þ ¼ 1, and f ð1Þ ¼ 0.
Debye et al. [11] showed that, by scattering of X-ray,

the structure factor of many porous media could be

described by a single correlation length k

f ðrÞ 	 e�ðr=kÞ; where
1

k
¼ � S0

2ð0Þ
1� /

¼ S
4Vpð1� /Þ : ð7Þ

In a well sorted, such as a pack of mono-sized beads,

one finds other features, such as oscillations in the

structure factor. A nice figure which relates various

features of S2ðrÞ to geometrical features, e.g., grain size
is given in [10,12].
In the same spirit, we introduce the pair-correlation

function K2ðrÞ for the internal field, Bz. The details of Bz

will be discussed in later sections. The correlation

functions for other components can be derived using the

same technique.

K2ðrÞ is defined similarly as S2:

K2ðrÞ �
R
dr1Bzðr1 þ rÞX ðr1 þ rÞBzðr1ÞX ðr1ÞR

dr1X ðr1 þ rÞX ðr1Þ
ð8Þ

� C2ðrÞ
S2ðrÞ

: ð9Þ

The X factors ensure that only contributions from the

pore space is included. This definition is most relevant to
NMR experiments that use spins to detect magnetic field

changes. The function K2 is specific to the magnetic field.
For example, in a constant field, K2 ¼ 1, independent of
distance and C2ðrÞ ¼ S2ðrÞ.
Again, the material is assumed to be isotropic ho-

mogeneous, so that K2 only depends on the distance r.
The factors X ðr1 þ rÞX ðr1Þ are made explicit to show
that as r ! 1,

C2ðr ! 1Þ ! 1

Vp

Z
Vp

dr1Bzðr1Þ
 !2

¼ /hBzi2Vp : ð10Þ

Since the average field is zero, K2ðr ! 1Þ 	 0.
Similarly,

C2ðr � 0Þ ¼
1

Vp

Z
Vp

dr1Bzðr1Þ2 ¼ hB2z iVp : ð11Þ
3. Magnetic length scale

Next consider the characteristic length associated

with the magnetic field that corresponds to k, that of the
structure factor, above. To obtain the initial slope we

consider a Taylor expansion of C2 in terms of r:

C2ðr! 0Þ ¼ 1

Vp

Z
Vp

dr1B2z ðr1Þ

þ r
Vp

r̂r �
Z
Vp

dr1ðr1Bzðr1ÞÞBzðr1Þ þ Oðr2Þ

¼ hB2z iVp þ
r
2Vp

I
Sp

dSpr̂r � n̂nBzðr1Þ2 þ Oðr2Þ

¼ hB2z iVp �
rS
4Vp

hB2z iSp þ Oðr2Þ: ð12Þ

The last step comes from integrating over the pore-side

of the interface (a half-space) and noting the directions

of the two unit vectors. The above equation can be re-

written, in the spirit of Debye [11], as

K2ðrÞ 	 hB2z iVpe
�ðr=KMÞ; ð13Þ

and the magnetic length scale KM is defined as

1

KM

¼ S
4Vp

hB2z iSp
hB2z iVp

 
� 1
!
: ð14Þ

The geometrical and structural information, such as

the magnetic length scale KM captured by K2 is likely to
be relevant to the fluid transport properties in the ma-
terials. In fact, a similar parameter, K, has been inves-
tigated extensively [13–15] in an effort to provide a direct

characterization of the fluid transport from electric

measurement. The K parameter is defined for for elec-

trical conduction in insulating porous media with con-

ducting fluids in the interstices:

2

K
¼
R
jrwðrÞj2 dSpR
jrwðrÞj2 dVp

; ð15Þ

where w is the microscopic electrical potential and rw is
the electric field. These authors have shown that this

K parameter or length scale plays an essential role in

determining the overall conductivity of porous media
when there is an additional non-zero interfacial
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conductivity and it is related to the permeability for
fluid-flow. The equivalence of magnetostatics and elec-

trostatics implies that KM must be similar to K (note the
factor of two difference in the definitions). This com-

parison is rigorous in the limiting case when the spheres

are perfectly diamagnetic (such as superconductors), the

magnetic field lines are confined in the pore-space, and

the normal component of B is zero. In most cases of

interest in NMR, the susceptibility contrast between
the phases is a small perturbation and field lines pene-

trate both the phases. Nevertheless, the correlation

function with both ends of the measuring ruler inside the

pore carries the relevant information of the pore-space

geometry.

In the remainder of the paper, we will consider these

ideas for a specific, prototypical porous medium, the

Finney pack [16]: a dense random packing of non-pe-
netrating spheres. The pack was made experimentally by

filling a container with about 8000 ball bearings of the

same size and then squeezing and shaking to reach

maximum density. This and similar packs were reviewed

by Cargill [17].
4. The Finney pack and magnetism

A dense random packing of non-penetrating spheres,

shown in Fig. 1, is used here as a prototypical porous

medium. It provides a useful model to understand var-

ious transport properties.

First, consider a single sphere of permeability lint of
radius R0 embedded in a medium of permeability lext
and subjected to an external uniform field B0 at infinity.
The magnetic dipole moment m of the sphere is:
Fig. 1. A typical slice in the Finney pack used for the numerical cal-

culations. The size of the circles depends only on the position of the

spheres with respect to the slicing plane.
m ¼ lext � lint
lext þ 2lint

R3B0: ð16Þ

We only consider here a small and isotropic suscep-

tibility for both the spheres and the medium, such that m

is along the direction of B0, and m 	 4pDvR30B0=3, in
three dimensions, and 4pDv ¼ lext � lint.
The magnetic field at a point R due to the magnetic

dipole m located at the origin in three dimensions is (see,
for example, Eq. 5.58 in [18]):

BintðRÞ ¼ 3ðm � RÞR� R2m
jRj5

: ð17Þ

The total local field is the sum of B0 and Bint. In this
article, we shall be only concerned with the internal field,

Bint.
If we take B0 along ẑz, Bintz / ½3 cos2ðhÞ � 1�=jRj3, has

positive values at the poles, h ¼ 0; p and negative at the
equators h ¼ p=2. For an isolated dipole, the regions of
the strong field are at the north and the south poles. It

can be seen that the field gradients are strongly localized
near the north and south poles as well as near the rest of

the surface. We will see below that some of these fea-

tures persist while new features emerge in dense packs

where the total field is a superposition of the fields from

individual spheres.

The internal field at coordinate R is given by a

superposition of fields from all spheres:

BintðRÞ ¼
X
i

3m � ðR� RiÞðR� RiÞ � ðR� RiÞ2m
jR� Rij5

ð18Þ
and Ri are the centers of the spheres.

One can show that some of the properties of the in-

ternal field are independent of the sphere size. Let us use

a scaled variable, r, so that R � rR0. Eq. (18) can be
rewritten in term of the scaled variable,

BintðrÞ ¼ m
R30

X
i

3ẑz � ðr� riÞðr� riÞ � ðr� riÞ2

jr� rij5

¼ 4pDvB0
3

X
i

3ẑz � ðr� riÞðr� riÞ � ðr� riÞ2

jr� rij5
:

ð19Þ

The last line is obtained using Eq. (16). This explicitly

shows that if the sample size and geometry are scaled by

a constant factor, the magnetic fields at the corre-

sponding positions would remain the same, for instance,

the magnetic field distribution would be the same. Of

course, the length scale would be scaled by the same
factor. As a result, the magnetic field gradient would be

reduced by the same factor. In fact, this property is not

limited to spherical grains and is generally true for

arbitrary shape. This is a consequence of the equations

of magnetostatics, for example, see Chapter 5 of [18].
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For the rest of the paper, we shall refer to the internal
field in the scaled, unitless form, B ¼ Bint=ð4pDvB0=3Þ
and further focus on the z-component, Bz, since it is

more relevant to NMR.

To speed up the calculations, we only retained, in the

sum in Eq. (19), the dipoles that are close to the point of

observation. The contributions from dipoles further than

a cut-off distance dcut-off were discarded. This amounts to
assuming a very large spherical Lorentz cavity for the
distribution of point-dipoles and a very large spherical

sample [4]. We found that the calculated value of the field

become practically insensitive to dcut-off when dcut-off was
greater than 7R0. Therefore, we set dcut-off ¼ 7R0 in all the
following numerical simulations. To avoid edge effects,

the pore points within a distance dcut-off from the

boundary of the packing were never scanned. In this

way, the spatial distribution of the dipoles contributing
in the above sum is always that of a spherical bulk

sample. This technique also avoids the demagnetization

effect due to finite sample with non-spherical shape.
Fig. 3. The internal field B vector is shown as arrows in a pore at the

middle of the Finney pack. The surfaces of the nearby spheres are

shown in (a) to give a sense of the pore space and absent in (b) for a

better visualization of the back of the pore. One finds that the flux lines

near the spheres are similar to those of the isolated spheres while the

flux lines in the middle region of the pore display a complex behavior.
5. Internal field in the Finney pack

5.1. Distribution and spatial characteristics

In Fig. 2 we show the internal field and the gradient

along the YZ plane in the center of the pack. In Fig. 2a
Fig. 2. (a) Internal field (z-component) and (b) the magnitude of its gradient
middle of the pack. The circular black objects are the sections of the spheres

the individual spheres. The internal field is shown as the color scale from mi

Distributions of Bz and (d) the magnitude of the field gradient, jrBzj, of the
where Bz is shown, one can clearly observe the variation
of Bz within individual pores and that the overall field

change occurs over the length scale of the pore size. For

example, there is no rapid oscillation of the field within

one pore. In addition, the hot spots continue to be

present near the north and the south-poles of many

grains. Fig. 2b shows that the magnitude of the gradient

jrBzj is stronger near the poles.
Figs. 2c and d show the distributions of Bz and the

magnitude of the gradient jrBzj. The shape of the field
jrBzj in the Finney pack of spheres, shown along a plane (YZ) in the
and their sizes are dependent on the position of the sectioning plane to

nimum to maximum values. The external field is applied vertically. (c)

Finney pack.



Fig. 4. Plots of the pair-correlation functions of the pore space f (line)
and the internal magnetic field, K2=hB2z i (open circles) calculated for
the Finney pack. The similarity between the two functions are re-

markable. The inset shows the correlation functions for small r and the
filled symbols (circles for f and squares for K2) were data obtained
using a specific algorithm to enhance the accuracy at small r. The
porosity of Finney pack is found to be 0.361.
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distribution is approximately symmetrical, which is very
different from that of a single isolated dipole sphere [2].

This is clearly due to the superposition of the field from

many spheres. The average field is zero, a reflection of

the isotropy of the arrangement of the spheres. It is also

very different from that of the 2D cylinder pack [4]

where a singularity is present at the zero field. Such

singularity also appears in regularly packed spheres in

three dimension [19] due to the particular symmetry of
the structures. In the randomly packed samples, no long

range packing orders exist, as a result, the field distri-

bution appears smooth without sharp features.

Using the original dipole formula for the internal

field, Eq. (19), we have calculated the second moment of

the field (Bz) distributionffiffiffiffiffiffiffiffiffi
hB2z i

q
¼ 0:642: ð20Þ

Note that Bz is a normalized variable and unitless. The

second moment is often a good measure of the the range

of Bz. It is important to note that the internal field is

bound by a maximum and the minimum, which are

found numerically to be 3.5 and )1.9. The maximum
field is likely to be in the locations where two spheres are
close and aligned along the direction of B0, thus the

contributions from the two spheres are added with the

maximum of 4 corresponding to two touching spheres.

The minimum field corresponds to two spheres nearby

and aligned perpendicular to B0 so that the minimum is

)2. Certainly, the range of Bintz as measured in the ex-

periments, and its minimum and maximum fields are

proportional to the applied field B0.
The field gradient also shows a broad distribution,

Fig. 2d. Since Bz and its slope are continuously varying

in space, such a broad gradient distribution should not

be viewed simply as a summation of constant gradients.

Instead, it should be considered as a reflection of the

complex spatial characteristics of Bz and the full spatial

dependence can be very important in many experimental

conditions. For example, the gradient is often measured
by spin-echo decay or CPMG sequence where the spins

are allowed to diffuse certain distance. The measured

gradient is in fact averaged over this distance. Thus,

when the diffusion distance is changed, the obtained

gradient distribution may change.

Fig. 3 shows a three-dimensional view of the internal

field vector B within one pore in the middle of the

Finney pack. The length of the arrows is proportional to
the magnitude of jBj and the direction of the arrow in-
dicates the orientation of the B vector. Also, the color of

the arrows from red to blue is proportional to the y-
coordinate, providing a sense of perspective. Near the

spheres, one may find that the flux line of B (by con-

necting the arrows) are similar to those for a single

sphere, due to the dominating contribution from the

nearest sphere. However, in the rest parts of the pore,
contributions from all nearby spheres are important. In
the middle region of the pore, the angular dependence of

the dipole formula determines that the field, in partic-

ular, Bz, will be close to zero due to the near symmetrical

contribution from all angles.

5.2. Correlation functions

In Fig. 4, we show correlation functions obtained for
the Finney pack. The numerical calculations were per-

formed by the following method. First, pick a point i in
the pore space, then select N points randomly and uni-

formly in the full space (grains and pores). Determine

that only N 0 points (a subset of N ) are in the pore space.
Thus, N 0=N ! / when N ! 1. Find the number of
points that are at a distance r to the point i from the full
space, n, and from the pore space, n0. Then, S2ðrÞ is given
by the assemble average of n0=n when N ! 1 and av-

eraged over i. For K2, we further calculated the internal
magnetic field Bz at all points, and evaluate

K2ðrÞ ¼
P

ij BzðriÞBzðrjÞ
n0

; j 2 n0; and N ! 1: ð21Þ

For all pairs, jri � rjj ¼ r. An averaging over i is
made.

Despite the broad argument that Bz should reflect the

pore geometry in some ways, the similarity of the two

functions is striking. Both of them exhibit very similar

initial decay at short distance, and several periods of

oscillations with a period slightly larger than the diameter
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of the spheres. The only difference is the amplitude of the
oscillation is somewhat larger for K2 at r around 1–2.
The appearance of the smooth initial decay of K2 with

a slope that is similar to the surface-to-volume ratio is

another demonstration of our earlier conclusion from

the visualization of Bz that the internal field inhomoge-

neity occurs over the length scale of the pore size and

there is no rapid oscillation of Bz within one pore. This

conclusion from K2 is much stronger because it is based
on the statistics of many pores, compared to that from

Figs. 2 and 3 which include only a few pores and a

limited perspective.

The other important aspect of the similarity between

f and K2 is that the magnetic field correlation function
can be experimentally measured by NMR techniques,

thus providing a novel method for the determination of

the pore structure.
Numerical evaluation for the Finney pack yields

hB2z iSp ¼ 0:941 and hB2z iVp ¼ 0:412. Using the porosity
/ ¼ :361, one obtains S=Vp ¼ 5:26=R. The initial slope
of f is then 2:07=R0, and 1=KM ¼ 1:67=R0. This value is
consistent with a direct evaluation of the slope of K2ðrÞ
in Fig. 4.
6. Conclusion

In this paper, the internal magnetic field induced by

the susceptibility contrast are examined with details. We

show that a striking similarity between the magnetic

field correlation function K2 to the structure factor of
the porous media. As a result, it is likely that K2 may
provide a new possibility using NMR to characterize
internal structure of complex media instead of using the

conventional scattering technique such as X-ray and

neutron.

We would like to summarize the properties of the

internal field:

1. Bi
z profile and its distribution is independent of the

grain size. When the grain size is scaled up by a factor

k while maintaining the overall geometry, the Bi
z pro-

file will remain the same with the distance scaled by

the same factor.

2. Bi
z is bounded by a maximum and a minimum.

3. The spatial correlation of Bi
z decays over the length

scale of the pore size.

4. Bi
z profile in different pores are similar statistically.

5. The internal field correlation function is intimately

related to the structure factor of the medium.
6. The initial decay of the field correlation function

characterizes a magnetic length scale KM which is

likely to be an important parameter for fluid trans-

port in the medium.
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